浅谈复合材料的回收利用方法
本文摘要:树脂基复合材料以比强度高、比模量高、抗疲劳断裂性能好、耐化学腐蚀、耐候性好等优点,在航空工业、汽车工业及风电产业得到广泛应用。
树脂基
复合材料以比强度高、比模量高、抗疲劳断裂性能好、耐化学腐蚀、耐候性好等优点,在航空工业、汽车工业及风电产业得到广泛应用。尤其在风电产业,大功率风电叶片基本都由树脂基复合材料制造成型的。风电产业在过去几年经历迅猛发展,也意味着将来会集中退役,叶片具有的巨大结构尺寸、复合材料高强性能和耐化学腐蚀等特点,给回收处理增加了难度。目前,树脂基复合材料回收方法主要分三种:物理回收法、热解回收法、溶液回收法。
物理回收法
机械粉碎回收法作为较早被研究的一种物理回收方法,主要依靠机械设备,通过机械力将复合材料碾碎、压碎或切碎,获得尺寸不一的块体颗粒、短纤等物质。该方法具有工艺简单、不产生污染物等特点,在不影响材料性能的前提下,回收的块体颗粒可作为填料适量加入其它材料中。
北京玻璃钢研究院徐佳等人对粉碎回收料尺寸及应用范围进行总结。尺寸>25×25mm的粒子可用于建材,如废纸制造的纸板、轻型水泥板、农用地面覆盖材料和隔音材料等;尺寸在3.2~9.5mm的粒子可用于屋顶沥青和混凝土的填料、铺路材料补强剂等;<60μm的粒子可用于片状模塑料、团状模塑料和热塑性塑料填料等。虽然物理回收方法操作简单,可以回收不同类型的复合材料,但纤维受到破坏较大,无法得到长纤维。
热解回收法
热解回收法大体可分两种,一种是只涉及能量回收的焚化或燃烧,将粉碎的复合材料颗粒焚烧处理,把燃烧的热量转化为其它形式的能量使用,该处理方法简单,但生产成本高,废弃物燃烧容易放出有毒气体,而且燃烧后灰分填埋会对环境造成二次污染。
另一种是在空气或惰性气体环境中利用热量使树脂降解的方法。回收过程充分利用降解产生的热量,不仅能得到表面干净的纤维,还能得到有机液体燃料,如热解油。但如果回收条件控制不好的话,废气中会掺杂污染物,且回收的纤维受到高温作用,其机械性能也会受到较大影响。总的来说,热解法技术难度大,对回收设备要求高,回收费用较高。
溶剂回收法
溶剂法是在一定压力和温度的条件下,通过溶剂(如硝酸、高沸点的醇或胺、超/亚临界流体等)作用使树脂分子链发生降解或解聚,而达到回收再利用的目的。该方法能较好分解基体树脂而不损伤纤维性能,但是设备造价高,设备耐腐蚀性、抗氧化性等要求也比较高,且溶液后处理也较复杂。
以上每种回收方法都有优点,也有不可回避的缺点,有些方法还停留在试验室阶段,由于叶片不同部位结构各异,不同叶片所用基体树脂也千差万别,没有任何一种方法能完美解决叶片回收问题,必须根据叶片结构和材料特点,采用合适的回收方式。根据风电行业的发展轨迹,叶片回收利用将成为风电产业的一个新的环节,也将成为
风电产业可持续发展的关键。