中国高海拔地区风能资源特性与风电开发研究
本文摘要:但在云贵地区风电开发建设和运行过程中,却逐渐暴露出一些问题,原因主要在于对高海拔地区气候、风况特性了解不够,风能资源前期评估工作粗放,风电机组可靠性和适应性低。
三、湍流强度
湍流强度代表10min内风速随机变化幅度大小,影响风电机组的疲劳载荷,是IEC61400-1风电机组安全等级分级的重要参数之一。IEC61400-1-1999标准中,通过湍流强度特征值(平均湍流强度Iref+1*湍流标准差σ)作为衡量湍流强度的标准。
(一)高海拔地区湍流特征
云贵高原地区湍流基本呈现两种特征,见图6,连绵平缓的高山草甸地形下,湍流较小,强风速度段(>10m/s)平均湍流强度基本低于0.09,湍流标准偏差σ在0.02-
0.03之间,15m/s湍流强度特征值一般小于0.12,湍流很小;见图7重叠连峦、陡峭、植被丰富的高山地形下,强风速段湍流呈现“上翘”的特征,平均湍流一般在0.12-0.14之间,湍流标准偏差σ在0.04-0.055之间,15m/s湍流强度特征值较大在0.16-0.18之间,特殊条件下,湍流甚至超过A类标准。
青藏高原地区属于平坦的戈壁滩,湍流很小,15m/s湍流强度特征值一般小于0.1,见图8。
(二)成因分析
廖明夫等在《风力发电技术》中提出大气湍流的两个主因是风切变和热对流,风切变受地形、地貌、粗糙度和热力稳定度影响;热对流湍流是地面上、下层气流温度差引起的热对流。通常情况下,上述两个原因往往同时导致湍流的发生。
图四 不同地区植被示意图
(青海戈壁荒漠-云南高山草甸-云贵多植被山体)
图5 地表粗糙度类型转换时对风切变的影响示意图
地形改变风切变规律,原则上山丘或山脊顶部风会加速,见图9,圆形平缓山包地形下,风流附着地表层流,风速随高度增加而增大,上下对流不明显,湍流小;而陡峭地形下,背风侧出现湍流区,湍流影响区域的范围、大小、强度等取决于地形的坡度、弯度、地表粗糙度、风速等。
云贵高原地区,很好的验证了上述理论结果,该地区湍流受地形、地貌、地表粗糙度影响大,表现不一,故在进行测风数据分析及机组设计排布时需慎重考虑以下几点:
(1)测风塔的代表性问题,测风塔位置所体现的湍流、切变等特征能否代表整个风电场,是否存在特殊性或局限性;
(2)排布设计时应尽量避开背风坡区域,以降低湍流对机组载荷带来的不利影响;
(3)植被丰富或较高树木的区域,应考虑适当提高风电机组轮毂高度,增大叶尖离地距离,减少湍流影响。
青海地区日夜温差大,大气不稳定,易形成热力对流,造成湍流日变化大,见图10。
图6 云贵连绵平缓的高山草甸地形
图7 云贵山包 陡峭 植被丰富的高山地形
图8 青海平坦 小粗糙度的荒漠戈壁滩高原地形